SYNTHESIS AND PROPERTIES OF 2-HYDROXY-2,4,6-CYCLOOCTA-TRIENONE (1,7-π-HOMOTROPOLONE)

Yoshio Kitahara*, Masaji Oda, and Shōichi Miyakoshi
Department of Chemistry, Faculty of Science, Tohoku University
Sendai 980, Japan

(Received in Japan 8 September 1975; received in UK for publication 6 October 1975)

Homoaromaticity has received considerable attentions as represented by fairly extensive investigations on homotropylium ion $\underline{1}$ and its derivatives. $^{1-3}$ Although, in this view, 2,3- and 4,5- σ -homotropones were synthesized, they do not show appreciable homoaromaticity. 4,5 2,4,6-Cyclooctatrienone $\underline{2}$ has also been concluded not to be homoaromatic from the result of variable-temperature 1 H-NMR study. 1,6

Although being formally a derivative of tropone, tropolone (2-hydroxytropone) has peculiar properties because of its highly mobile tautomeric system. There can be three isomeric 2-hydroxycyclooctatrienones as the candidates for π -homotropolones. It is expected that electron-releasing property of an enol and capability of an α -ketol group to form intramolecular hydrogen bond may have favorable influences on the homoconjugation and the molecular geometries of 2-hydroxycyclooctatrienones. We wish here to report the synthesis and noteworthy properties of 2-hydroxy-2,4,6-cyclooctatrienone $\underline{5}$ which we consider to be called 1,7- π -homotropolone, the first compound among the three possible π -homotropolones.

Oxidation of 2,6-cyclooctadienone $\underline{3}^7$ with SeO₂ in refluxing THF (15 hr.) gave 3,7-cyclooctadiene-1,2-dione $\underline{4}$ in 41% yield [yellow prisms, mp. 30-31°C]. Heating to reflux of $\underline{4}$ with NEt₃ (0.1 equiv.) in benzene for 6 hr. caused double bond migration and enolization to afford 2-hydroxy-2,4,6-cyclooctatrienone $\underline{5}$ in 65% yield [pale yellow needles, mp. 40-42°C].

The 1 H-NMR spectrum of 5 in CF₃COOH-conc. H₂SO₄ (1:1) shows signals at δ = 0.86(1H, dd, J=10.5, 10.0 Hz), 4.30(1H, dd, 10.0, 7.5), 5.70(1H, dt, 10.5, 7.5), and 7.1-7.9 (4H, m), indicating the formation of 1,2-dihydroxyhomotropylium ion $\underline{6}$. Compound $\underline{5}$ formed an acetate $\underline{7}$ as a pale yellow liquid (Py-Ac₂O, 46%). When treated with NBS (1.0 equiv.) in CDCl₃ in a nmr tube at room temperature, $\underline{5}$ easily and cleanly yielded 3-bromo-4,6-cyclooctadien-1,2-dione $\underline{8}$ which shows $\overline{1}$ H-NMR signals at δ 3.32(1H, dd, J=14.4, 6.2 Hz), 3.83(1H, dd, 14.4, 8.0), 5.21 (1H, d, 4.0), and 5.6-6.8 (4H, m). On attempts to isolate (Florisil, SiO₂), however, $\underline{8}$ readily reenolized to afford 2-hydroxy-3-bromo-2,4,6-cyclooctatrienone $\underline{9}$ in $\underline{60}$ % yield [pale yellow needles, mp. $\underline{8}$ 4-85°C].

Table I. Spectral Data of 4, 5, 7, 9, and 2

		· · ·	-· -· -· -· -			
Compd. IR, ν cm ⁻¹ UV, λ nm (log _E) ^a l _H -NMR, δ ppm (multiplicity, J Hz) ^b						
4	1688, 1650 1623	238 (3.69), 247sh 310 (2.33), 319 (2 390 (1.43)	(3.66) 2.56 (4H, m), 6.01 (2H, d, 13.0) .28) 6.46 (2H, m)			
<u>5</u>	3380, 1648 1618, 1555	239 (4.05), 298 (3.341sh (3.42)	(1H, ddd, 10.0, 8.5, 8.0), 6.3-6			
		(0.1N NaOH) 252 (3 329sh (3.59), 361				
<u>7</u>	1792 (medium) 1768 (strong) 1670 (strong)	219 (4.03), 236sh 286 (3.70), 340 (3				
<u>9</u>	3450, 1648 1612, 1589	253 (4.11), 293 (3 360 (3.68)	.70) 3.10 (2H, br), 5.66 (1H, dt, 9.0 8.5), 6.39 (2H, m), 6.78 (1H, d, 12.0), 7.76 (1H, br. s, OH)			
2		215 (4.17), 237 (3 285 (3.71), 345 (2		C		
^a in methanol unless otherwise indicated; ^b in CDCl ₃ at 100 MHz at normal						
temperature unless noted; ^C ref. 6						

The spectral data of $\underline{4}$, $\underline{5}$, $\underline{7}$, and $\underline{9}$ are summarised in the Table I compared with those of 2,4,6-cyclooctatrienone $\underline{2}$. The carbonyl frequencies of $\underline{5}$ and $\underline{9}$ are ca 10-20 cm⁻¹ lower than those of $\underline{2}$ and $\underline{7}$. The UV spectra of $\underline{5}$ and $\underline{9}$ are

appreciably different from that of $\underline{2}$, particularly by showing relatively intense absorption at 341 and 360 nm, respectively. The $^1\text{H-NMR}$ spectra of $\underline{5}$ and $\underline{9}$ are especially informative on the interesting property of these compounds; while the methylene protons of $\underline{2}$ and $\underline{7}$ appear as a sharp doublet at normal temperature, those of $\underline{5}$ and $\underline{9}$ do as very broad signals to indicate that ring inversion in these compounds are considerably slow. The chemical shift of H-7 of $\underline{5}$ (δ 5.56) is 0.21 ppm higher than that of $\underline{2}$ (δ 5.77), whereas those of other olefin protons are ca 0.2 ppm lower. The IR and NMR data suggest that $\underline{7}$ is at equilibrium with its valence isomer $\underline{10}$ (ca 20%). Similar equilibration (ca 5%) has been observed for $\underline{2}$ itself. $\underline{6}$, $\underline{8}$ In contrast to these compounds, for $\underline{5}$, neither the presence of valence isomer $\underline{11}$ nor 2-hydroxy-2,3- π -homotropone $\underline{12}$ (another possible isomer of $\underline{5}$) was indicated spectroscopically.

The variable-temperature $^1\text{H-NMR}$ spectra of the methylene protons of 5 are shown in the Figure. The free energies of activation of ring inversion at the coalescence temperature $(\Delta \text{Gc}^{\dagger})^9$ of 5 , 7 , and 9 are listed in the Table II compared with those of 1 and 2 . It is remarkable that the $^{\Delta\nu}$ of 5 (70 Hz) well below Tc is considerably larger than that of 2 (ca 25 Hz 6) and $^{\Delta}\text{Gc}^{\dagger}$ of the former (15.7 kcal) is ca 4 kcal larger than the latter (11.3 kcal 6). The $^{\Delta\nu}$ and $^{\Delta}\text{Gc}^{\dagger}$ of 7 is between 2 and 5, being rather near to 2 .

Figure. Variable-Temperature ¹H-NM Spectra of The Methylene Protons of 5

Figure. Variable-Temperature ¹H-NMR Table II. Activation Parameters for

	Ring	Inversions (60 MHz)	
Compd.	Tc, °C	ΔV, Hz	ΔGc [‡] , kcal/mol
1			22.3 ^a
2	-44	25	11.9 (Ea) b
	_		11.3 ^C
<u>5</u>	50 ^d -21 ^đ	70 ^e	15.7 ^f
7	-21 ^đ	70 ^e 46 ^e 53 ^e	12.3 ^f
9	28 ^đ	53 ^e	14.8 ^f
	i		L

a ref. 1; b ref. 6; c calculated from the reported data in ref. 6; d the error is estimated to be ±3°C; e ±1 Hz f ±0.3 kcal.

Compound $\underline{5}$ has pKa value of 9.0 (determined by UV method using 10% ethanolic $\mathrm{H_3BO_3}\text{-KCl-Na}_2\mathrm{CO}_3$ buffer solutions), which is less acidic than tropolone (6.7) but more acidic than 1,2-cyclohexanedione (10.30). 11

These results suggest that there are considerable differences between $\underline{2}$ and $\underline{5}$ in electron delocalization and molecular geometry. The molecular geometry of homotropylium ion $\underline{1}$ has been believed, though not definitely verified, to be formulated by the Winstein picture (Formula I), whereas that of 2,4,6-cyclooctatrienone $\underline{2}$ has been considered to be a tub form (Formula II). It may be expected from the physical properties that the molecular geometry of $\underline{5}$ deviates from a typical tub form of cyclooctatetraene towards the Winstein picture of $\underline{1}$, an extreme depiction being the Formula III.

In conclusion, 2-hydroxy-2,4,6-cyclooctatrienones, $\underline{5}$ and $\underline{9}$, seem to have some π interactions, at least more than $\underline{2}$, at C-1 and C-7, and hence may be called 1,7- π -homotropolones.

X-ray crystallographic analyses of $\underline{5}$ and $\underline{9}$ will provide an important insight into the matter, and such attempts are now in progress.

REFERENCES AND NOTES

- * To whom all correspondences should be addressed.
- S. Winstein, Quart. Rev., Chem. Soc., 23, 1411 (1969), and references therein. See also: P. R. Story and B. C. Clark Jr., in "Carbonum Ions", Vol. III; Wiley, New York, N. Y., U. S. A., 1972, p 1007.
- P. Warner, D. L. Harris, C. H. Brady, and S. Winstein, Tetrahedron Lett., 4013 (1970).
- 3) (a) R. Huisgen and J. Gasteiger, Tetrahedron Lett., 3661 (1972); (b) J. Gasteiger and R. Huisgen, ibid., 3665 (1972).
- J. D. Holmes and R. Pettit, J. Amer. Chem. Soc., 85, 2531 (1963).
- 5) O. L. Chapman and R. A. Fugiel, J. Amer. Chem. Soc., 91, 215 (1969).
- C. Canter, S. M. Pokras, and J. D. Roberts, J. Amer. Chem. Soc., <u>88</u>, 4235 (1966).
- 7) T. S. Cantrell and J. S. Solomon, J. Amer. Chem. Soc., 92, 4656 (1970).
- 8) A. C. Cope and B. D. Tiffany, J. Amer. Chem. Soc., 73, 4158 (1951).
- 9) The $\triangle Gc$ s were calculated from the Tc and $\triangle v$ using the approximate formula $k = (\triangle v^2 + 6J^2)^{1/2}/\sqrt{2}$ and the Eyring's equation $k = RT/Nh \cdot exp(-\triangle G^{\dagger}/RT)$.
- 10) W. von E. Doering and L. H. Knox, J. Amer. Chem. Soc., 75, 297 (1953).
- 11) G. Schwarzenbach and H. Suter, Helv. Chim. Acta, 24, 617 (1941).